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Explorations in Design Space: Unconventional
Electronics Design Through Artificial Evolution

Adrian Thompson, Paul Layzell, and Ricardo Salem Zebulum

Abstract—Three hypotheses are formulated. First, in the “de-
sign space” of possible electronic circuits, conventional design
methods work within constrained regions, never considering most
of the whole. Second, evolutionary algorithms can explore some of
the regions beyond the scope of conventional methods, raising the
possibility that better designs can be found. Third, evolutionary
algorithms can in practice produce designs that are beyond the
scope of conventional methods, and that are in some sense better.

A reconfigurable hardware controller for a robot is evolved,
using a conventional architecture with and without orthodox
design constraints. In the unconstrained case, evolution exploited
the enhanced capabilities of the hardware. A tone discriminator
circuit is evolved on an FPGA without constraints, resulting in a
structure and dynamics that are foreign to conventional design
and analysis. The first two hypotheses are true.

Evolution can explore the forms and processes that are natural
to the electronic medium, and nonbehavioral requirements can
be integrated into this design process, such as fault tolerance.
A strategy to evolve circuit robustness tailored to the task, the
circuit, and the medium, is presented. Hardware and software
tools enabling research progress are discussed. The third hy-
pothesis is a good working one: practically useful but radically
unconventional evolved circuits are in sight.

Index Terms—Design automation, electronics design, evolution-
ary algorithms, evolutionary theory, fault tolerance.

I. INTRODUCTION

I MAGINE a design space[1] where each point in that space
represents the design of an electronic circuit. All possi-

ble electronic circuits are there, given the component types
available to an electronics engineer, and the technological
restrictions on how many components there can be and how
they can interact. In this metaphor, we loosely visualize the
circuits to be arranged in the design space so that “similar”
circuits are close to each other.

The design space is vast. There are oscillators and filters,
finite-state machines, analog computers, parallel distributed
systems, von Neumann computers, and so on. These nestle
amongst the majority of circuits for which a use will never be
found. In this paper, we investigate the following hypotheses.

H1) Conventional design methods can only work within
constrained regions of design space. Most of the whole
design space is never considered.
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H2) Evolutionary algorithms can explore some of the re-
gions in design space that are beyond the scope of
conventional methods. In principle, this raises the
possibility that designs can be found that are in some
sense better.

H3) Evolutionary algorithmsin practice can produce de-
signs that are beyond the scope of conventional meth-
ods and are, in some sense, better.

Note that the truth of each hypothesis relies in part on the
truth of the preceding ones. In Section II we attempt to verify
the first hypothesis by characterizing what electronics design-
ers normally do. Being essentially a work of anthropology, this
is inevitably subjective and open to dispute. We judge that the
basic conclusions are robust to variations in the exact details
of how the designer’s activities are conceptualized.

In the case studies of Sections III and IV, the second hy-
pothesis is verified empirically, to a high degree of confidence.
The hierarchical dependency of the hypotheses means that H1
is also strengthened.

In the final section, tools are presented for ongoing research
to produce circuits through artificial evolution that are beyond
the scope of conventional design, are in some sense better,
and that are practically useful. This is the third hypothesis.
From the experimental results, it is clear that there can be
some special “niches” [1] for unusual circuits, but it remains
to be seen how broadly they can be applied. We interpret our
results as encouraging.

A. Algorithms

Most of the discussion applies equally to any evolutionary
algorithm (EA), in fact to any search algorithm based on a
process of “generate-and-test.” Since our aim is to explore
design space as freely as possible, we avoid incorporating
heuristics into the search that make sweeping assumptions
about the characteristics of desirable circuits. For performance
superior to random search, however, some domain-specific
search biases are necessary [2]. Hence evolutionary search is
used, the bias of which (that future candidate circuits should be
based on variations of the more successful earlier ones) makes
minimal—but not negligible—assumptions as to the nature of
the circuit itself.

Biases also arise, often unintentionally, from the circuit
representation to which the operators are applied. Skews in the
number of points representing each circuit (or type of circuit),
and clustering of circuit types in the representation with respect
to the operators, can both bias the searching of even a simple
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evolution strategy [3]. For many EA’s, the local
gradient of fitness with respect to the operators can bias the
direction of search, for example toward relatively “smooth”
parts of the fitness landscape [4], [5]. Whether helpful or
adverse for search efficacy, such biases are not easily avoided,
but can sometimes be turned to specific uses such as giving
graceful degradation properties to evolved circuits [6].

Later, when more of the uncharted territory of design space
has been investigated, the performance of the EA might be
improved by incorporating this heuristic knowledge into the
circuit representation, or the variation and selection operators.
In this paper we use basic genetic algorithms (GA’s), often
with very direct “genetic” encodings. This is to aid clarity in
describing the experiments and does not imply that these GA’s
are particularly effective EA’s for these tasks. Note that at any
given time, an EA is searching over accessible variations rather
than the entire design space [7]; no attempt is made at global
search, but instead at the exploration of new regions.

B. The Objectives of Circuit Design

The objectives of circuit design can be divided into behav-
ioral and nonbehavioral requirements.

Behavioral requirements define the desired interaction be-
tween the circuit and its external environment. One possibility
is to describe the required behavior directly at the interface
between the circuit and environment in the form of a relation-
ship between inputs and outputs over time: direct behavioral
requirements. Another is to define the desired behavior of a
larger system in which the circuit is embedded: embedded
behavioral requirements. An example of the latter would be
to define the required behavior of a robot that the circuit
controls, rather than defining the input/output relationship
of the controller itself. The need to keep electromagnetic
emissions within acceptable limits is often thought of at both
direct and embedded levels: guidelines for the emissions of
subsystems, combined with principles for systems-level design
to guarantee overall performance [8].

Nonbehavioral requirements define the resources that are
available to the circuit and the environmental conditions under
which it must continue to operate for some minimum lifetime
at a given maximum failure rate. Examples of resources are
size (silicon or circuit-board area), weight, power consump-
tion, and construction cost. Examples of possibly relevant
environmental conditions are temperature, output load, power-
supply voltage, fabrication variations, defects (needing fault
tolerance), electromagnetic interference (EMI), humidity, and
mechanical vibration. The combinations and ranges of such
environmental variables under which the circuit must meet
its behavioral requirements can be thought of as defining its
operational envelope: a set of points in a space spanned by the
environmental variables. As an operational envelope consists
partly of ranges of environmental variables, it can be visualized
usefully in terms of regions for correct operation (Fig. 1). In
general, an operational envelope may be of arbitrary structure,
so this visual metaphor should be used with care.

We describe a circuit that performs adequately throughout
the operational envelope defined for its task as beingrobust.

Fig. 1. Visualizing an operational envelope.

Not included above is the need to minimize the time and cost
of the design process. At first sight this is not a requirement on
the circuit itself, but in fact if the circuit is designed so as to be
rapidly and rigorously testable and able to be easily modified
to fix design or specification errors, then time to market is
reduced. Additionally, a product lifecycle often includes the
release of updates, or specially customized versions of the
original design, requiring a readily modifiable design. Finally,
engineering design is often a process of “design exploration”
[9] in which partial attempts to solve the problem are used
iteratively to refine the requirements specification into a useful
form.

Hence a circuit must be evaluated according to many
different criteria. For example, there can be as many as 20
different criteria composing the requirements for a commercial
operational amplifier [10], [11]. Typically, some of the criteria
should be maximized or minimized, while others provide hard
constraints. EA methods for multicriteria [12] and constrained
optimization [13] are well developed and there is potential
for them to be adapted and extended for electronics design
[14]–[20].

C. Unconstrained Evolutionary Electronics

In this paper, the “unconstrained” approach to evolutionary
electronics is developed. We deliberately seek to explore
beyond the scope of conventional design in the hope of finding
circuits that are in some way superior in a practical setting,
according to some combination of the many criteria above.
This was stated as hypotheses H1–H3, where what is meant
by “in some sense better” has now been clarified.

The need to reduce design time and cost means that electron-
ics design automation through EA’s could be profitable even
if constrained to work within the same sphere as conventional
design. By concentrating on the unconstrained case, however,
we aim to map out the boundaries and benefits of the evo-
lutionary approach, without blindly accepting the constraints
inherited from conventional design. It is not claimed that all
unconventional evolved circuits will be practically useful; it is
claimed that to reject all unconventional circuits solely because
they cannot be arrived at through conventional design methods
is premature.

The argument that conventional design is constrained in
a way that evolutionary design need not be, in principle, is
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Fig. 2. Voltage/time waveforms exemplifying the operation of a CMOSNOT

gate (center). Shown at the left is the input, and at the right is the corresponding
output. The gray regions represent the basins of attraction of the two attractor
states.

given in the next section. This is hypothesis H1. To show
that this can allow a practical EA to find new useful circuits
is an empirical matter (H2). Hence a pair of case studies is
presented. Finally, research tools are described that are being
used to illuminate whether unconventional evolved circuits
really can be of engineering benefit, when judged by the many
criteria of a practical application (H3).

II. CHARACTERIZING CONVENTIONAL DESIGN

First, we consider separately the two electronics paradigms:
digital and analogue. Then the process of design within those
paradigms is discussed.

A. Digital Design

In a digital design, whenever a signal is used or operated
upon, it is rounded off to the closest one of a finite number
of attractor states. Usually, there are two attractor states
situated at the upper and lower extremes of possible signal
levels: binary logic. Whenever a new or manipulated signal is
generated, it is at one of the attractor states. Fig. 2 shows the
operation of a binaryNOT gate made from CMOS transistors.

It takes a nonzero time for an input to change from one
state to another. During this time, and briefly afterwards, the
fundamentally analogue nature of the transistors implementing
a logic element is revealed at its output, which is to be seen
briefly at levelsbetweenattractor states, possibly even making
multiple transitions before quickly settling into the appropriate
attractor state (switching transients).

In a digital circuit, made as a network of logic elements,
precautions must be taken to ensure that switching transients
do not affect the overall behavior of the system. This is
done by some method of phase control between parts of the
system, so that a subcircuit is not allowed to use the output
of another until it has settled at the correct attractor state. In
asynchronous logic design, local handshaking signals are used
between subcircuits [21]. In synchronous logic, one or more
regular “clock” signals is used to control when subcircuits can
communicate. The frequency of a clock is chosen such that the
slowest subcircuit it controls has time for its output to settle
at the correct state between “ticks.”

There are two main advantages to digital design. The first,
to be elaborated in Section II-C, is that most of the design
can be considered at the level of logical algebra, without
having to think about the physics of electronic devices. The
second is that digital systems, especially binary ones, are

extremely tolerant to corruption of the signals. This is because
of the signal restoration to an attractor state at almost every
opportunity. It is relatively easy to make binary digital circuits
with a huge operational envelope. For example, if a signal is
corrupted by noise, or an attractor state of an element’s output
drifts with temperature, there are large margins for error, as
seen in Fig. 2. In synchronous circuits, there also needs to be
a margin for error included in the clock period: the time for
an output to be computed, stabilize, and be transferred to the
next subcircuit may vary within the operational envelope.

These advantages come at a cost. The basic elements must
all have the signal-restoring property. The system must be
broken down into subcircuits that are simple enough for
internal transients not to be a problem. Usually this means that
the subcircuits are basically feedforward or “combinatorial”
(having no feedback or recurrent loops within them). The
communications between the subcircuits must be carefully
regulated, usually by means of registers that only load in new
values when communications are to be permitted (subcircuits
have stabilized). Digital design, by using the components only
as switching devices, must impose these design constraints to
suppress the other aspects of the analogue, continuous-time
reality.1

B. Analogue Design

Analogue design finds analogies between the physical be-
havior of groups of electronic components and the operations
needed to construct the desired system. To allow this exploita-
tion of the natural behaviors of groups of components, internal
signals are mostly of continuous value, in contrast to digital
design. Although not unprincipled, analogue design is often
thought of as more of an “art” compared to digital design. Even
many predominantly digital systems require some analogue
circuitry at least to deal with the interface to the world.

Analogue design can extract more functionality from the
components than can digital, because more of the components’
behavior is put to use. Especially potent is the use of real time,
rather than representing time as a computational variable like
any other, as in digital systems [24], [25]. For some tasks
(where “task” includes nonbehavioral requirements) analogue
design is clearly superior. In other cases, the choice of ana-
logue or digital design is also strongly influenced by the ease
of the design process itself, which often favors digital.

The disadvantages of analogue design are the obverse of
the advantages of digital design identified above. Although
system-level design can be at an abstract level, analogue circuit
design must necessarily consider properties of the physical
components, and their interactions, in greater depth than for
digital design. The second disadvantage is that stability and
large noise margins are more difficult to guarantee.

Sarpeshkar [26] shows that as the complexity of an analogue
system increases, it becomes essential for signal values to

1Although charge is quantized, and these charges often move through
periodic atomic lattices having discrete energy levels, at the scale addressed
by contemporary circuit design we may consider currents and voltages as
continuous [22]. This could change in the future if meso/nano-scale electronics
becomes practical; it might then be possible to exploit physical quantization
to implement digital computations [23].
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Fig. 3. Example of the building block (B.B.) approach in analogue design.

be restored to attractor states occasionally, otherwise all of
the signal would eventually be swamped by unavoidable
noise. This signal restoration does not happen at every circuit
element, as it does in digital systems, and the representation
of the analogue signal may be distributed across more than
one physical voltage, current, or charge. There is flexibility
in the choice of restoration schemes, not limited to two
attractor states and not necessarily uniform throughout the
system. Sarpeshkar provides a costs/benefits analysis for some
restoration schemes under various resource constraints and
operational envelopes, with reference to neural systems; it
appears that there is great untapped potential in analogue (or
hybrid) electronics, if new design styles could be developed.

In practice, analogue design is currently based around the
use of building block subcircuits. These have been carefully
designed and analyzed in the past to perform generally useful
functions and form a “cookbook” with which a larger design
can be constructed. A designer takes building blocks from
textbooks and from looking at other circuits designed for
similar problems. Examples of building blocks are amplifiers,
filters, oscillators, voltage or current sources, and many others.
The original design of a building block can be very challeng-
ing, often beyond the capabilities of designers who later use
them. Without building blocks, the design of complex analogue
systems would be too difficult.

The use of building blocks is not only to avoid “reinvent-
ing the wheel” for each design. By compartmentalizing the
circuit into functional packages with well-defined interfaces,
it becomes easier to make the whole circuit robust across an
operational envelope. Taking thermal stability as an example,
Fig. 3 shows a hypothetical system composed of building
blocks. The enlarged subcircuit is a standard current-sink
building block [27]. Transistor Q2 serves solely to compensate
for the thermal variation of the base-emitter voltage of Q1.
Under certain well-analyzed conditions, this building block
can be used to serve the function of a current-sink over a range
of temperatures, irrespective of what the rest of the system is
doing. If all of the other building blocks are similarly endowed
with thermal stability of function and are composed so as
not to violate their constraints of operation, then the whole

circuit can be given thermal stability. Although there are still
pitfalls, the design of complex robust analogue circuits would
be practically infeasible without this approach.

C. The Design Activity

We have seen that both digital and analogue design styles
are, in practice, restricted as to what kinds of circuits can
be produced. Digital designs must be made of signal-restoring
elements regimented into subcircuits of simple dynamics, with
constrained moments of communication. Analogue designs
are made mostly of standard building blocks, with the rare
creation of a completely novel design usually being restricted
by design-difficulty to the level of these small subcircuits.

Further practical design constraints arise from the choice
of design flow. A design flow starts with high-level design
decisions about the gross structuring of the system and ends
with exact details of how it should be implemented. In between
are stages of problem decomposition and a progression from
considering the problem at a highly abstract level, through to
reifying the design to the concrete details of implementation.
The particulars of a design flow are strongly influenced by the
computer-aided design (CAD) tools available for each step,
and the ease with which different tools can be integrated.

Design-automation tools are highly developed for digital
systems, and far less so for analogue. Rutenbar [28] sees the
impediment to analogue design automation as the difficulty of
providing a library of standard cells adequate to implement
an arbitrary user design fully. A standard cell is an imple-
mentation building block, completely specifying component
details, placement, and routing to achieve a precise function:
this is different from the more generic architectural design
building blocks mentioned above. We have already indicated
that it is inherent in an analogue design process that it is more
difficult to abstract function from implementation, than for
digital systems.

Evolutionary algorithms have been applied as design-
automation tools at various levels of abstraction: Table I
gives some examples for a digital design flow. Top-down
design of this sort is ubiquitous and almost indispensable for
large systems, but does impose constraints of its own on what
circuits can be produced. Abstraction implies the suppression
of some details; design at an abstract level therefore requires
constraint of those neglected details upon progression toward
the concrete implementation.

For the current enterprise, we seek to explore design space
as freely as possible, even if in doing so we can only work
with relatively small circuits in practice. Once the potential of
new territories in design space is ascertained, this knowledge
can be fed back into the domain of top-down design, perhaps
as additions to the designer’s cookbook of subcircuit ideas.
The variation operators, or the representation of the circuit on
which they operate, may be designed to encourage modularity
and repeated structures, aiding the evolutionary process in the
production of large systems [34], [35]. For the present, we
apply evolutionary algorithms in a bottom-up fashion, with
the EA’s variation operators manipulating the structure at
the finest level of implementation detail available. Constraints
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TABLE I
SOME STEPS IN A DIGITAL DESIGN FLOW TO WHICH EA’s HAVE BEEN APPLIED

associated with the conventional digital or analogue paradigms
are resisted as being prejudicial for evolution. In general,
the circuits are continuous-time, continuous-value dynamical
systems; digital, analogue, and hybrid circuits are all included
in this repertoire of possibilities. No claim is made thatmore
of design space can practically be surveyed (that may or may
not be the case), but rather new regions.

Here, there is no distinction between design and implemen-
tation: the process of evolutionary design happens at the im-
plementation level. As well as avoiding abstraction constraints,
this facilitates the integration of nonbehavioral and behavioral
requirements. Many nonbehavioral requirements, such as size
or power consumption, are closely coupled both with general
design decisions and with details of the implementation.
In a top-down design flow, implementation details are not
fully contemplated during the early—more abstract—stages,
making design for nonbehavioral requirements problematic.
An example of integrating a fault-tolerance (nonbehavioral)
requirement with embedded behavioral requirements will be
given in Section III-C. It is partly the ability to embrace non-
behavioral requirements during all stages of an evolutionary
design process, in combination with an exploration of new
circuit structures and dynamics, that provides the opportunity
for better circuits to arise through evolution (H3).2

By diagnosing the constraints of conventional design—from
the analogue and digital design paradigms, and from top-down

2It is not essential to adopt such a radical unconventional stance to begin to
tackle this issue. For instance, Miller and Thomson [36] incorporate geometric
layout considerations into evolutionary design of digital logic.

Fig. 4. The robot known as Mr Chips.

design flows—hypothesis H1 is shown. It is also deduced
that an evolutionary approach, in principle, can explore some
regions in design space that are beyond the scope of con-
ventional methods. This is not sufficient for hypothesis H2:
we need to go on todemonstratean evolutionary algorithm
exploring new regions. That is done through a pair of case
studies carefully formulated for the purpose, presented in the
next two sections. During these case studies, the need to deal
with a realistic set of requirements is temporarily neglected.
In the final section, ongoing work to address this is described,
moving toward hypothesis H3: the practical evolution of robust
unconventional electronics.

III. CASE STUDY 1: REMOVING DYNAMICAL

CONSTRAINTS FROM A STANDARD ARCHITECTURE

In this first case study, a standard electronic architecture
is taken, and the temporal constraints associated with digital
design are relaxed and placed under evolutionary control. This
allows a direct comparison of the behavioral capabilities of the
same hardware when subjected to, or freed from, design con-
straints. Integration of a nonbehavioral requirement for fault
tolerance with the behavioral requirements is then discussed.
The behavioral requirements are an example of the embedded
type, where it is the performance of an electromechanical
system in which the circuit is embedded that is evaluated.

A. The Experiment

The circuit to be evolved was the onboard controller for
the robot shown in Fig. 4 [37]. This two-wheeled autonomous
mobile robot has a diameter of 46 cm, a height of 63 cm, and
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was required to display simple wall-avoiding/room-centering
behavior in an empty 2.9 m4.2 m rectangular arena. For this
scenario, the dc motors were not allowed to run in reverse and
the robot’s only sensors were a pair of time-of-flight sonars
rigidly mounted on the robot, one pointing left and the other
right. The sonars fire simultaneously five times a second; when
a sonar fires, its output changes from logicto logic ,
returning to when the first echo is sensed at its transducer.

Conventional electronic design would tackle the control
problem along the following lines: for each sonar, a timer
would measure the length of its output pulses—and thus the
time of flight of the sound—giving an indication of the range
to the nearest object on that side of the robot. These timers
would provide binary-coded representations of the two times
of flight to a central controller. The central controller would be
a hardware implementation of a finite-state machine (FSM),
with the next-state and output functions designed so that it
computes a binary representation of the appropriate motor
speed for each wheel. For each wheel, a pulse-width modulator
would take the binary representation of motor speed from the
central controller and vary the mark : space ratio of pulses sent
to the motor accordingly.

It would be possible to evolve the central controller FSM
by implementing the next-state and output functions as lookup
tables held in an off-the-shelf random access memory (RAM)
chip; this is the well-known direct addressed ROM implemen-
tation of an FSM [38]. The FSM would then be specified
by the bits held in the RAM, which could be reconfigured
under the control of each individual’s genotype in turn. Such
evolution would still be subject to the constraints of digital
design: all of the signals are synchronized to a global clock to
give clean, deterministic state-transition behavior as predicted
by an abstracted Boolean model.

What if the constraint of synchronization of all signals
is relaxed and placed under evolutionary control? Although
superficially similar to the FSM implementation, the result
(Fig. 5) is a machine of a different nature. Not only is the
global clock frequency placed under evolutionary control, but
the choice of whether each signal is synchronized (latched)
by the clock or whether it is asynchronous (directly passed
through as an analogue voltage) is also determined by evo-
lution. These relaxations of temporal constraints—constraints
necessary for a designer’s abstraction but not for unconstrained
evolution—offer a rich range of potential dynamical behavior
to the system, to the extent that the sonar echo pulses can be
fed directly in, and the motors driven directly by the outputs,
without any pre- or postprocessing: no timers or pulse-width
modulators. (The sonar firing cycle is asynchronous to the
evolved clock.)

Let this new architecture be called a dynamic state ma-
chine (DSM). It is not a finite-state machine because a de-
scription of its state must include the temporal relationship
between the asynchronous signals, which is a real-valued
analogue quantity. In the conventionally designed control
system there was a clear sensory/control/motor decomposition
(timers/controller/pulse-width-modulators), communicating in
atemporal binary representations which hid the real-time dy-
namics of the sensorimotor systems, and the environment

Fig. 5. The hardware implementation of the evolvable DSM robot controller.
Optional latches (O.L.) control whether each signal is passed straight through
asynchronously as an analogue voltage, or whether its digital value is latched
according to the global clock of evolved frequency. Each optional latch was
implemented using an analogue switch chip able to bypass a clocked latch.
A full circuit diagram is given in [39].

linking them, from the central controller. Now, the evolving
DSM is intimately coupled to the real-time dynamics of its
sensorimotor environment, so that real-valued time can play an
important role throughout the system. The evolving DSM can
explore special-purpose tight sensorimotor couplings because
the temporal signals can quickly flow through the system being
influenced by, and in turn perturbing, the DSM on their way.

For the simple wall-avoidance behavior, only the outer two
of the eight feedback paths seen in Fig. 5 were enabled,
feeding the RAM chip’s two least-significant data bits back
to its two least-significant address inputs. The resulting DSM
can be viewed as the fully connected, recurrent, mixed syn-
chronous/asynchronous logic network shown in Fig. 6, where
the bits stored in the RAM give a lookup table implementing
any pair of logic functions of four inputs. This continuous-
time dynamical system could not be simulated in software
easily, because the effects of the asynchronous variables and
their interaction with the clocked ones depend upon the
characteristics of the hardware: meta stability [40], [41] and
glitches will be rife, and the behavior will depend upon
physical (analogue) properties of the implementation, such as
propagation delays, meta-stability constants, and the behavior
of the RAM chip when connected in this unusual way.
Similarly, a designer would only be able to work within a
small subset of the possible DSM configurations—the ones
that are easier to analyze.

A simple GA was used, with a linear bit-string genotype,
point-mutations, single-point crossover, linear rank-based se-
lection, and elitism [42]. The contents of the RAM (only
32 bits required for the machine with two feedback paths),
the period of the clock (16 bits in a Gray code, giving
a clock frequency from around 2 Hz to several kHz) and
the clocked/unclocked condition of each signal (1 bit per
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Fig. 6. An alternative representation of the evolvable DSM, as used in the
experiment. Each is an optional latch (see Fig. 5).

signal) were directly represented as contiguous segments of the
genotype. The population size was 30, probability of crossover
0.7 per offspring, and the bit-wise mutation probability was set
such that the expected number of mutations per offspring was
one [43].

If the distance of the robot from the center of the arena in
the and directions at time was and , then after
an evaluation for seconds, the robot’s fitness was a discrete
approximation to the integral

fitness (1)

and were chosen such that their respective Gaussian
terms fell from their maximum values of 1.0 (when the robot
was at the center of the arena) to a minimum of 0.1 when
the robot was touching a wall in their respective directions.
The function encourages continual movement, having the
value 0 when the robot is moving, but 1 otherwise. Each
individual was evaluated for four trials of 30 s each, starting
with different positions and orientations. The worst of the
four scores was taken as the fitness [44]. For the final few
generations, the evaluations were extended to 90 s, to find
controllers that were not only good at moving away from walls,
but also staying away from them.

For convenience, evolution took place with the robot in a
kind of “virtual reality.” The real reconfigurable DSM circuit
controlled the real motors, but the wheels were just spinning
in the air. The photograph of Fig. 4 was taken during an actual

evolutionary run of this kind. The wheels’ angular velocities
were measured and used by a real-time simulation of the
motor characteristics to calculate how the robot would move
if on the ground. The sonar echo signals were then artificially
synthesized and supplied in real time to the hardware DSM.
Realistic levels of noise were included in the sensor and motor
models, both of which were constructed by fitting curves to
experimental measurements, including a stochastic model for
specular sonar reflections. Full details are given in [39]. The
GA and the virtual environment simulation were performed by
a laptop PC onboard the robot, and a pair of microcontrollers
synthesized the sonar and clock waveforms. The real DSM
hardware connected to the real motors was used at all times.
For operation in the real world, the real sonars were simply
connected in place of the simulated ones, and the robot placed
on the ground.

Fig. 7 shows the excellent performance attained after 35
generations, with a good transfer from the virtual environment
to the real world. The robot is drawn to scale at its starting
position with its initial heading indicated by the arrow; there-
after only the trajectory of the center of the robot is drawn.
The bottom-right picture is a photograph of behavior in the
real world, taken by double-exposing 1) a picture of the robot
at its starting position with 2) a long exposure of a light
fixed on top of the robot moving in the darkened arena. If
started repeatedly from the same position in the real world,
the robot follows a different trajectory each time (occasionally
very different) because of real-world noise. The robot displays
the same qualitative range of behaviors in the virtual world,
and the bottom pictures of Fig. 7 were deliberately chosen to
illustrate this.

Given that this miniscule electronic circuit receives the raw
echo signals from the sonars and directly drives the motors
(one of which happens to be more powerful than the other),
the performance is surprisingly good. It is not possible for the
DSM directly to drive the motors from the sonar inputs (in the
manner of Braitenberg’s “Vehicle 2” [45]), because the sonar
pulses are too short to provide enough torque. Additionally,
such naive strategies would fail in the symmetrical situations
seen Fig. 7(a) and (b). One of the evolved wall-avoiding
DSM’s was analyzed (below), and found to be going from
sonar echo signals to motor pulses using only 32 bits of RAM
and 3 flip-flops (excluding clock generation): highly efficient
use of hardware resources, made possible by the absence of
design constraints.

B. Analysis

Fig. 8 attempts to represent one of the wall-avoiders in state-
transition format. This particular individual used an evolved
clock frequency of 9 Hz (about twice the sonar pulse repetition
rate). Both sonar inputs evolved to be asynchronous, and both
motor outputs clocked, but the internal state variable that was
clocked to become the left motor output was free-running
(asynchronous), whereas that which became the right output
was clocked. In the diagram, the dotted state transitions occur
as soon as their input combination is present, but the solid
transitions only happen when their input combinations are
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(a) (b)

(c)

(d)

Fig. 7. Wall avoidance in virtual reality and (d) in the real world, after 35 generations. The top pictures are of 90 s of behavior, the bottom ones of 60 s.
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Fig. 8. A representation of one of the wall-avoiding DSM’s. Asynchronous transitions are shown dotted and synchronous transitions solid. The transitions
are labeled with (left, right) sonar input combinations, and those causing no change of state are not shown. There is more to the behavior than is
seen immediately in this state-transition diagram, because it is not entirely a discrete-time system, and its dynamics are tightly coupled to those of the
sonars and the rest of the environment.

present at the same time as a rising clock edge. Since both
motor outputs are synchronous, the state can be thought of as
being sampled by the clock to become the motor outputs.

This state-transition representation is misleadingly simple in
appearance, because when this DSM is coupled to the input
waveforms from the sonars and its environment, its dynamics
are subtle, and the strategy being used is not obvious. It is
possible to convince oneself that the diagram is consistent with
the behavior, but it would have been very difficult to predict
the behavior from the diagram because of the rich feedback
through the environment and sensorimotor systems on which
this machine relies. The behavior even involves a stochastic
component, arising from the probabilities of certain combina-
tions of the machine’s mixed synchronous/asynchronous state,
at the arrival of pulses from the clock and the asynchronous
sonars.

The DSM underlies a nontrivial robot behavior, using mini-
mal resources [46], by means of the circuit’s rich dynamics and
exploitation of the hardware (an idea dating back to 1949 [47]).
After relaxing the temporal constraints necessary to support the
designers’ digital abstraction, a tiny amount of hardware has
been able to display rather surprising abilities. As a control
experiment, three GA runs were performed under identical
conditions, but with all of the optional latches set to “clocked”
irrespective of the genotype. All three runs failed completely,
confirming that new capabilities had been released from the
architecture when the dynamical constraints were relaxed. In
another set of three control runs, all the optional latches were
set to “unclocked.” These runs succeeded but the behavior
was not so reliable: from time to time the robot would head
straight for a wall and crash into it.

In three repetitions of the main experiment, the clock
allowed the mixed synchronous/asynchronous controllers to
move with a slight “waggle” [just visible in the Fig. 7(d)], and
this prevented them from being disastrously fooled by specular
sonar reflections. The sonars were effectively scanning the
walls slightly because of the waggling movement of the robot
body. This suggests that while removing an enforced clock

can widen the repertoire of dynamical behaviors, providing an
optional clock of evolvable frequency, to be used at points in
the circuit determined by evolution, can expand the repertoire
of dynamics still further. The clock becomes a resource, not
a dynamical constraint.

C. Integrating a Nonbehavioral Requirement
of Fault Tolerance

In Section II-C we described the worth of integrating nonbe-
havioral requirements into the objectives during evolutionary
design. Some nonbehavioral characteristics, such as size or
power consumption, are usually easily measurable to become
factors in the selection process [14]. Others can be impractical
to measure directly, but sometimes the evaluation procedure
can be contrived so that they exert an implicit influence on fit-
ness. As an example, we consider introducing a fault tolerance
requirement for the DSM robot controller. Evolutionary tech-
niques for fault-tolerant electronics are largely unexplored, but
the engineering benefits on offer are significant [48], [49], [6].

The requirement is for the controller to be tolerant to any
adverse single-stuck-at (SSA) fault in the memory array of
the RAM chip, causing a bit to read the opposite of the value
written to it. These faults are easily emulated by inverting one
of the bits specified by evolution as it is written to the chip.
Altering the configuration is a generally applicable way to
emulate some classes of faults in reconfigurable hardware; if
the circuits are being evaluated in software simulations there
is even more flexibility.

Ideally, for each fitness evaluation an individual would
be given a trial in the presence of every possible fault in
turn, and the resulting fitness score would be some measure
of performance in the face of any fault. There are usually
many possible faults, however, making exhaustive testing
prohibitively time consuming (but not always [50]). Even
for the DSM robot controller, testing each individual in the
presence of the 32 emulated adverse SSA faults would take
too long.



176 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 3, SEPTEMBER 1999

Fig. 9. Maximum and mean fitness in the population over time. The first
85 generations were in the absence of faults, thereafter all fitness evaluations
were in the presence of the current fault.

If the goal is to optimize worst-case performance (i.e.,
minimize the effects of the most serious fault), there is a
potential shortcut. In this case the fitness measure will be based
on performance in the presence of only the single most serious
fault. If some way of predicting which fault is the most serious
can be found, then only this single fault needs to be introduced
during the fitness evaluation. A similar situation arises if only a
relatively small subset of the possible faults seriously degrades
the system: only this subset need be considered.

Which faults are the most serious, however, might be
different for each individual in the population. If the only
way to identify the worst faults for each individual is to test
them with each fault in turn, there can be no shortcut. In
practice, though, after the first few generations the individuals
are mostly similar and the population as a whole changes
gradually over time. These facts can be used in predicting
which faults are the most serious without having to test every
individual with every fault.

We now apply these ideas to the robot controller. First,
the wall-avoider was evolved as before, but this time using
a population size of 50. After 85 generations the GA had
stabilized at a good solution. Then theconsensus sequence
was generated: the genotype formed by, for each locus, taking
whichever of the values {0, 1} was most common in the
population at that position. The robot controller coded for
by this consensus sequence was then tested in the presence
of each of the 32 possible adverse SSA faults in turn. The
fault that caused the consensus individual to behave the most
poorly (lowest fitness score) was nominated as the “current
fault.” Another generation of evolution was then performed,
but with the current fault being present during all of the
fitness evaluations. After this generation the new consensus
individual was constructed, tested, and a possibly new current
fault nominated for the next generation. The process continued
in this way, with a single fault being present throughout all
evaluations within a generation—this fault being the one that
caused the worst performance in the consensus individual of
the previous generation.

Fig. 9 shows that the maximum and mean fitnesses dropped
sharply at generation 85 when faults were first introduced, but
over the course of the next 150 generations returned to high
values. Fig. 10 shows that when the faults were first applied

Fig. 10. The evolution of fault tolerance: results of the exhaustive test over
all possible adverse SSA faults made on the consensus individual of each
generation. The darker a spot, the more serious the fault. Pure white represents
satisfactory performance (fitness� 1.0), and pure black the worst possible
performance. At the generations marked with arrows, the consensus individual
is satisfactory in the presence of any SSA fault.

Fig. 11. Fault tolerance of the consensus at generation 85 and then after 119
generations of evolution in the presence of faults. In each case, the faults have
been sorted from left to right in order of severity.

the controller was already tolerant to most SSA faults, but that
a few were critical. At various stages afterwards, this tolerance
to most SSA faults is lost in the GA’s attempts to improve
performance on the single most serious current fault. Some
serious faults are seen to persist over long periods. Eventually,
consensus individuals arose that give satisfactory performance
when any of the SSA faults is present.3 Fig. 11 compares
the fault tolerance of the conventionally evolved consensus
individual at generation 85 with that of the first completely tol-
erant consensus which arises at generation 204. The criterion
for satisfactory performance was for the real robot to display
what would reasonably be called wall-avoiding behavior and
corresponds to a fitness score of1.0.

This crude approach has exploited the similarity between
individuals in the population by predicting that a single fault
will be the most serious one for all individuals at a particular
generation. This fault was identified by exhaustively testing
a single “average” individual—the consensus. Though this
fault-prediction strategy is not exact, it had the desired effect
of catalyzing the evolution of a completely fault-tolerant
individual.

3If the GA was left to run, then these completely tolerant solutions would
be lost again as the GA concentrated entirely on improving performance in
the presence of the current most serious fault—even if that performance
was already satisfactory. No claims are made regarding the generality and
reliability of this particular algorithm used here for illustrative purposes.
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Many other strategies could be used to decide which faults
an individual should encounter during its evaluation: the
example above is merely a simple illustration. If there were
many possible faults, exhaustive testing of even just the single
consensus individual per generation could take too long. One
suggestion is to co-evolve [51] a population of faults that
concentrates on the weak-spots of the target population and
tracks them over time [49], [6]. Another potential method
is the use of repeated reevaluations of the more successful
individuals to build up gradually an accurate picture of their
performance in the presence of a set of faults [52].

Whatever method is used, it seems that if some way of
targeting the most serious weak spots of individuals can be
found, then subjecting the individuals to these faults during
their fitness evaluations can cause the evolution of systems
tolerant to all of the possible faults. It may be possible to use
an adaptive process such as co-evolution to target the weak
spots or search using application-specific heuristics may prove
more appropriate.

D. Conclusion to Case Study 1

The DSM robot controller experiments showed unequivo-
cally that removing the constraints of conventional design—in
this case, the temporal constraints associated with the digital
design paradigm—can release greater behavioral capabilities
from essentially the same electronic components. They pro-
vided an example of evolution using this freedom to explore
beyond the scope of conventional design: hypotheses H1 and
H2 are demonstrated.

A technique for the evolution of fault-tolerant circuits was
presented. It is not clear that it can scale up to circuits
with many possible faults, so it may be restricted to small
circuits (or subcircuits), and to problems posed such that there
are many satisfactory solutions. Nevertheless, by integrating
the nonbehavioral requirement of fault tolerance with the
behavioral requirements, a robot controller was evolved that
was inherently fault tolerant, not relying on the explicit use
of spare (redundant) parts as is normal [53], [54]. This was
possible because the nonbehavioral, implementation-oriented,
requirement was an inherent part of the evolutionary design
process, and was not deferred to the late stages of a top-down
design flow.

IV. CASE STUDY 2: EVOLVING A

CIRCUIT WITH MINIMAL CONSTRAINTS

In the previous case study, some temporal constraints were
relaxed, but the general architecture of the system was fixed.
The next step is to discover whether evolution really can
produce circuits looking completely alien to an electronics
designer or whether in practice such bizarre circuits are
unworkable. As first moves toward this radical goal, the
evolution of unusual oscillator circuits was investigated, both
in simulation [37] and using reconfigurable chips [55]. The
latter has been greatly extended and studied rigorously by
Huelsbergenet al. [56]. We now elucidate further by studying
another task.

The electronic device selected for the experiments is re-
configurable at a very fine grain, so as to impose the min-
imum of architectural constraints: the Xilinx XC6216 field-
programmable gate array (FPGA) [57]. Fig. 12 shows the
subset of its functionality used in the experiment. There is a 64

64 array of cells on the chip, of which only the north-west
10 10 corner was used. The connections between cells, and
their internal functions, are controlled by multiplexers. These
multiplexers are configured according to the contents of RAM
distributed throughout the array. A host microprocessor can
write to this configuration memory, causing the multiplexers
(electronic switches) to be set in a particular way, physically
instantiating any one of a vast number of possible electronic
circuits on the chip. That circuit will then behave in real
time, according to semiconductor physics, without any further
intervention. Special blocks around the periphery of the array
interface the edge cells to the external pins of the chip and can
be configured as inputs or outputs. In the experiment, there is
one input and one output, configured at fixed positions chosen
by the investigators.

The function within a cell can be configured to be any
binary logic function of two inputs, or multiplexer functions
of three inputs. In the experiment, however, the design con-
straints needed for digital operation will not be imposed. The
circuit being evolved is a continuous-time, continuous-valued,
dynamical system. The components of this system (the cell
function and routing multiplexers) have a very high gain, so
that if digital design principles are followed then the signals
will nearly always be saturated fully high or low. Without these
design constraints, there is also the possibility for analogue
effects. For example, aNOT gate is physically a very high-
gain inverting amplifier, and evolution is free to use it as
such.

A. The Experiment

The task was to evolve a circuit—a configuration of a 10
10 corner of the XC6216 FPGA—to discriminate between

square waves of 1 kHz and 10 kHz presented at the input
[55]. Ideally, the output should go to 5 V as soon as one
of the frequencies is present, and to 0 V for the other. The
task was intended as a first step into the domains of pattern
recognition and signal processing, as well as being part of the
scientific program. One could imagine such a circuit being
used to demodulate frequency-modulated binary data received
over a telephone line.

This task was not facile, because few components were
provided and the circuit has no access to a clock, or other off-
chip resources such as RC time constants, by which the period
of the input could be timed or filtered. Evolution was required
to produce a configuration of the 100 cells to discriminate
between input periods five orders of magnitude longer than the
input output propagation time of each cell (which is just
a few nanoseconds). A continuous-time recurrent arrangement
of the 100 cells had to be found that could perform the task
entirely on-chip.

Although the results of Section III suggested a benefit in
providing a clock of evolvable frequency as an optional
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(a)

(b)

Fig. 12. A simplified view of the XC6216FPGA. Only those features used in the experiments are shown. (a) A 10� 10 corner of the 64� 64 array of cells.
(b) The internals of an individual cell, showing the function unit at its center. The symbol represents a multiplexer—which of its four inputs is connected
to the output (via an inversion) is controlled by the configuration memory. Similar multiplexers are used to implement the user-configurable functionF .

resource rather than as an imposed constraint, no clock was
made available. This was primarily to assess the possibility of
evolution of very unusual circuits. There is also an engineering

justification: the components needed for an external time
reference would be bulky compared to the 1% of the FPGA’s
silicon area used by the final evolved circuit. The fully
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Fig. 13. The apparatus for the tone discriminator experiment. The 10� 10
corner of cells used is shown to scale with respect to the whole FPGA. The
single input to the circuit was applied as the east-going input to a particular
cell on the west edge, as shown. The single output was designated to be the
north-going output of a particular cell on the north edge.

integrated solution is preferable in terms of size, mechanical
robustness, and the cost of components and manufacturing.

To configure a single cell, there were 18 multiplexer control
bits to be set, and these bits were directly encoded onto a
linear bit-string genotype. The genotype of length 1800 bits
was formed from left to right by taking the cells in the 10
10 corner in a raster fashion, from west to east along each row,
and taking the rows from south to north. A basic GA was again
used, with a population size of 50, a crossover probability of
0.7, and a per-bit mutation probability such that the expected
number of mutations per genotype was 2.7. The mutation rate
was derived empirically.

The GA was run on a normal desktop PC interfaced to some
simple in-house electronics4 as shown in Figs. 13 and 14. To
evaluate the fitness of an individual, the hardware-reset signal
of the FPGA was first momentarily asserted to make certain
that any internal conditions arising from previous evaluations
were removed. Then the 1800 bits of the genotype were used
to configure the 10 10 corner of the FPGA, and the FPGA
was enabled. At this stage a genetically specified circuit existed
on the chip, behaving in real-time according to semiconductor
physics.

The fitness of a physically instantiated circuit was evaluated
automatically as follows. A tone generator drove the circuit’s
input with five 500 ms bursts of the 1 kHz square-wave, and
five of the 10 kHz wave. These ten test tones were shuffled
into a random order, which was changed every time. There
was no gap between the test tones. An analogue integrator
was reset to zero at the beginning of each test tone and then it
integrated the voltage of the circuit’s output pin over the 500
ms duration of the tone.

Let the integrator reading at the end of test tone number
be denoted . Let be the set of five 1

4Technical Notes:The circuitry was mounted wire-wrapped on an ISA
(industry standard architecture) card (Fig. 14). The analogue integrator was
of the basic op-amp/resistor/capacitor type, with a MOSFET to reset it to
zero [27]. A MC68HC11A0 microcontroller operated this reset signal (and
that of the FPGA), generated the tones, and performed 8-bit A/D conversion
on the integrator output. A final accuracy of 16 bits in the integrator reading
was obtained by summing (in software) the result of integration over 256
sub-intervals. Locations in the configuration memory of the FPGA and in the
dual-port RAM used by the microcontroller could be read and written by the
PC via registers mapped into the ISA-Bus I/O space. The XC6216 device was
a preproduction engineering sample.

kHz test tones and the set of five 10 kHz test tones. Then
the individual’s fitness was calculated as

fitness (2)

This fitness function demands the maximizing of the difference
between the average output voltage when a 1 kHz input is
present and the average output voltage when the 10 kHz input
is present. The calibration constantsand were determined
empirically, such that circuits simply connecting their output
directly to the input would receive zero fitness. Otherwise,
with , small frequency-sensitive effects in the
integration of the square-waves were found to make these
useless circuits a troublesome local optimum. This fitness
specification is an example of direct behavioral requirements.

It is important that the evaluation method—here embodied
in the analogue integrator and the fitness function (2)—fa-
cilitates an evolutionary pathway of very small incremental
improvements. Earlier attempts, where the evaluation method
only paid attention to whether the output voltage was above
or below the logic threshold, met with failure.

B. Results

Throughout the experiment, an oscilloscope was directly
attached to the output pin of the FPGA (see Fig. 13), so that the
behavior of the evolving circuits could be visually inspected.
Fig. 15 shows photographs of the oscilloscope screen, illus-
trating the improving behavior of the best individual in the
population at various times over the course of evolution.

The individual in the initial random population of 50 that
happened to get the highest score produced a constant5 V
output at all times, irrespective of the input. It received a fitness
of slightly above zero just because of noise. Thus, there was
no individual in the initial population that demonstrated any
ability whatsoever to perform the task.

For the first few hundred generations, the “best” circuits
simply copied the input to the output, combined with various
high-frequency oscillatory components. By generation 650,
definite progress had been made. For the 1 kHz input, the
output appeared to stay mostly high; for the 10 kHz input, the
output resembled the input.

The photographs (Fig. 15) show the behavior gradually
being refined, finally reaching the perfect desired behavior.
In fact, not visible in the final photographs were infrequent
unwanted spikes in the output; these were finally eliminated
around generation 4100. The GA was run for a further 1000
generations without any observable change in the behavior of
the best individual. The final circuit (arbitrarily taken to be the
best individual of generation 5000) appears to be perfect when
observed by eye on the oscilloscope. If the input is changed
from 1 kHz to 10 kHz (or vice-versa), then the output changes
cleanly between a steady5 V and a steady 0 V without any
perceptible delay.

It is apparent from the oscilloscope photographs that evo-
lution explored beyond the scope of conventional design. For
instance, the waveforms at generation 1400 would seem absurd
to an electronics designer of either digital or analogue schools.
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(a) (b) (c)

Fig. 14. The circuitry to evolve the tone discriminator. This ISA card plugs directly into the PC, and no extra electronics is needed. (a) The FPGA (beneath
a fan-cooled heat sink) and its interface chips. (b) A microcontroller supervising fitness evaluations. (c) The analogue integrator.

Not so evident in these photographs is the rich range of
dynamical time scales actually present. The components of the
nominally digital FPGA were not used according to a binary
logic abstraction, because a wider repertoire of behaviors was
available in the absence of design constraints.

Graphs of maximum and mean fitness and of genetic con-
vergence are given in Fig. 16. These graphs suggest in-
teresting population dynamics, especially at around gener-
ation 2660. The experiment is analyzed in depth from an
evolution-theoretic perspective in [58]. Crucial to any attempt
to understand the evolutionary process that took place is
the observation that the population had formed a genetically
converged “species” before fitness began to increase: this
is contrary to some conventional GA thinking [43], [44].
Evolution was the process of continual adaptation of this
relatively converged species, with mutation playing a key role
in generating new variants. Neutral networks—pathways of
mutational change having no effect on fitness—are thought to
have been important in allowing continued exploration without
becoming stuck at poor local optima [58].

The entire experiment took two–three weeks. This time was
dominated by the 5 s taken to evaluate each individual, with a
small contribution from the process of calculating and saving
data to aid later analysis. The times taken for the application of
selection, the variation operators, and to configure the FPGA
were all negligible in comparison. Current work suggests that
the fitness tests could have used much shorter bursts of input
tones. If evolution is to be free to exploit all of the components’
physical properties, fitness evaluations must take place at the
real time scales of the task to be performed and cannot simply
be accelerated, as they could for a discrete-time system by
increasing the clock speed. The evolution of circuits in detailed
physical simulations is increasingly attractive as computer-
power increases, but would be infeasible for circuits of this
complexity in the near future. See Section V-C for the use of
simulations.

The final circuit is shown in Fig. 17; observe the many
continuous-time feedback paths. The lack of visible patterns
in the circuit structure is not surprising: no preconceived bias
toward modular or repeated substructures was applied, nor is
it apparent that such patterning would be appropriate for such
a small circuit and for this task.

Parts of the circuit that could not possibly affect the output
can be pruned away. This was done by tracing all possible
paths through the circuit that eventually connect to the output.
A path not only includes routing, but also passing from an
input to the output of a cell’s function unit. It was assumed
that all of a function unit’s inputs could affect the function
unit output, even when the nominal logic function indicated
that this should not be so. This assumption was made because it
was not known exactly how function units that were connected
in continuous-time feedback loops actually would behave. In
Fig. 18, cells and wires are only drawn if there is a connected
path by which they could possibly affect the output, which
leaves only about half of them.

The pruned diagram shows components that could be func-
tional, but does not guarantee that they all are. To find which
parts were actually contributing to the behavior, a search was
conducted to find the largest set of cells that could have
their function unit outputs simultaneously clamped to constant
values ( or ) without affecting the behavior. To clamp a
cell, the configuration was altered so that the function output
of that cell was sourced by the flip-flop inside its function unit
(a feature of the chip not mentioned until now, and which was
not used during evolution): the contents of these flip-flops can
be written by the PC and can be protected against any further
changes. A program was written to select a cell at random,
clamp it to a random value, perform a fitness evaluation, and
to return the cell to its unclamped configuration if performance
was degraded, otherwise to leave the clamp in place. This
procedure was iterated, gradually building up a maximal set
of cells that can be clamped without altering fitness. The order
of clamping attempts, and the clamping values chosen, could
affect the result; hence the whole exercise was repeated until
a clear consensus emerged as to what the largest clamping set
was.

In the above automatic search procedure, the fitness eval-
uations were more rigorous (longer) than those carried out
during evolution, so that very small deteriorations in fitness
would be detected (made difficult by the noise present during
all evaluations). Clamping some of the cells in the extreme
north-west corner produced so tiny a fitness decrement that
even the extended evaluations did not detect it, yet by the
time all of these cells of small influence had been clamped, the
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Fig. 15. Photographs of the oscilloscope screen. Top: The 1 kHz and 10 kHz
input waveforms. Below: The corresponding output of the best individual in
the population after the number of generations marked down the side. For
these photographs an analogue oscilloscope of 20 MHz bandwidth was used.

combined effect on fitness was quite noticeable. In these cases
manual intervention was used (informed by several runs of the
automatic method), with evaluations happening by watching
the oscilloscope screen for several minutes to check for any
infrequent spikes that might have been caused by the newly
introduced clamp.

Fig. 16. Population statistics. Top: Maximum and mean fitnesses of the
population at each generation. Below: Genetic convergence, measured as
the mean Hamming distance between the genotypes of pairs of individuals,
averaged over all possible pairs.

Fig. 19 shows the functional part of the circuit that remains
when the largest possible set of cells has been clamped
without affecting the behavior. The cells shaded gray cannot
be clamped without degrading performance, even though there
is no connected path by which they could influence the
output—they were not present on the pruned diagram of
Fig. 18. Clamping one of the gray cells in the north-west
corner has only a small impact on behavior, introducing either
unwanted pulses into the output, or a small time delay before
the output changes state when the input frequency is changed.
Clamping the function unit of the most south-eastern gray
cell, which also has two active connections routed through it,
degrades operation severely—even though that function output
is not used as an input to any other cells. The gray cells must
be influencing the rest of the circuit by some means other than
the normal inter-cell routing; this enigma will be revisited in
the analysis to follow.

This circuit is discriminating between inputs of period 1 ms
and 0.1 ms using only 32 cells, each with a propagation delay
of less than 5 ns, and with no off-chip components whatsoever:
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Fig. 17. The final evolved circuit. The 10� 10 array of cells is shown, along
with all connections that eventually connect an output to an input. Connections
driven by a cell’s function output are represented by arrows originating from
the cell boundary. Connections into a cell which are selected as inputs to its
function unit have a small square drawn on them. The actual setting of each
function unit is not indicated in this diagram.

Fig. 18. The pruned circuit diagram: cells and wires are only drawn if there
is a connected path through which they could possibly affect the output.

a surprising feat. Evolution has been free to explore the full
repertoire of behaviors available from the silicon resources
provided, even being able to exploit the subtle interactions
between adjacent components that are not connected directly.
The input/output behavior of the circuit is digital, because
that is what maximizing the fitness function required, but the
complex analogue waveforms seen at the output during the
intermediate stages of evolution betray the rich continuous-
time continuous-value dynamics that are likely to be present
internally.

Only a core of 32 out of the 100 cells is involved in
generating the behavior, even though there was no explicit

Fig. 19. The functional part of the circuit. Cells not drawn here can be
clamped to constant values without affecting the circuit’s behavior.

encouragement of small solutions. This may be chance, or it
may be a natural way to solve the problem. It may be that
the mutation rate was sufficiently high that any larger func-
tional circuit could not be maintained by selection (the error
threshold [59]). Finally, the implicit search biases mentioned
in Section I-A might have been at play.

The circuit’s behavior is not brittle. Fig. 20 shows the av-
erage output voltage (measured using the analogue integrator
over a period of 5 s) for input frequencies from 31.25 kHz to
0.625 kHz. For input frequencies4.5 kHz the output stays at
a steady 5 V, and for frequencies 1.6 kHz at a steady 0 V.
Thus, the test frequencies (marked F1 and F2 in the figure) are
correctly discriminated with a considerable margin for error.
As the frequency is reduced from 4.5 kHz, the output begins
to rapidly pulse low for a small fraction of the time; as the
frequency is reduced further the output spends more time at 0
V and less time at 5 V, until finally resting at a steady 0 V as
the frequency reaches 1.6 kHz. Beyond this range, the output
stays at steady 0 V for inputs down to 0 Hz (dc) and at steady

5 V for inputs up to several MHz. These properties might
be called generalization and extrapolation, but are fortuitous:
no steps were taken to encourage them. It may be that this is
a natural response for a dynamical system of this class, but
not enough data is yet available to be sure.

Fig. 20 also shows the circuit’s behavior at temperatures
outside the range experienced during the evolutionary experi-
ment. The high temperature was achieved by placing a 60 W
light bulb near the chip, the low temperature by opening all of
the laboratory windows on a cool breezy evening. Varying the
temperature moves the frequency response curve to the left or
right, so once the margin for error is exhausted the circuit no
longer behaves perfectly to discriminate between F1 and F2.

In the examples given here, at 43.0C the output is not
steady at 5 V for F1, but is pulsing to 0 V for a small fraction
of the time. Conversely, at 23.5C the output is not a steady 0
V for F2, but is pulsing to 5 V for a small fraction of the time.
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Fig. 20. The frequency and thermal response of the final circuit. F1 and F2
are the two frequencies that the circuit was evolved to discriminate. For ease
of implementation, their exact periods were actually 0.096 ms (10.416 kHz)
and 0.960 ms (1.042 kHz), respectively.

However, the circuit operates perfectly over the5 C range
of temperatures to which the population was exposed during
evolution, despite its only available time reference being the
natural dynamical behaviors of the components, which are
temperature dependent.

C. Analysis

A useful circuit behavior has been evolved. The circuit
has some attractive engineering properties, chiefly its small
size. Its externally observable behavior has been characterized
with respect to different inputs and operating temperatures,
and found to be satisfactory within particular ranges (albeit
a small temperature range and only using this particular
FPGA device; see Section V-A). It might be thought that
this knowledge would be enough to allow the circuit to
be employed confidently in an application respecting these
observed limitations, but this is not so.

To advance research, or to learn new design ideas from the
circuit, we need to be able to discern some of its principles
of operation. Even if the goal is merely to evolve a circuit
that works (and we do not need to know how), however,
some degree of analysis may still increase its utility as an
engineering product. In particular, if bounds on possible long-
term changes in the circuit’s behavior can be derived, then
the circuit can be more widely applied with confidence.
The need for extended consistent performance is difficult
to accommodate within an evolutionary framework, because
usually the tests for fitness measurement of candidate solutions
(the bottleneck in the evolutionary process) are as brief as
possible. The evolutionary approach can be made more viable
if, through analysis, it can be predicted that a circuit will
perform adequately in the long term, even though it was never
tested for long during its evolution.

There are two components to long-term stability of behavior.
First, the circuit must be insensitive to certain variations in
its implementation or environment: robust with respect to

a necessary operational envelope. There can be a temporal
aspect to robustness as it includes thermal drift over time,
noise, aging effects in semiconductor devices and integrated
circuits, and so on. Second, it is possible for even simple
dynamical systems to display intermittent behavior over long
time scales [60]. This is not due to any external fluctuations,
but is a property of the system’s own dynamics. Circuits can be
constructed that will inevitably—though after a long period of
normal operation—suddenly and unpredictably change in their
qualitative mode of behavior, possibly forever, or perhaps to
return to normal operation for another long interval [61]. An
evolutionary algorithm, unless using debilitatingly long fitness
evaluation tests, would be blind to this pathological behavior
and could present such a circuit as a solution to the engineering
specification. Inherently erratic dynamics of this kind can also
interact with the temporal aspects of the operational envelope.
If analysis can provide reassurance against long-term sporadic
misbehavior, the circuit is rendered more useful.

In critical applications, complex circuits can be embedded
within an error-recovering framework [62]. The error recovery
mechanisms themselves can be simpler and perhaps verified
formally. For example, if a failure condition is detected, the
circuit responsible could be automatically reset to a safe
initial state. The more a circuit’s potential failure modes
are understood, the more feasible it becomes to construct a
resilient system containing it.

Analysis of exotic evolved circuits is different to that
undertaken as part of orthodox design. At an abstract level,
the appropriate tools are sometimes more akin to neuroscience
than to electronic engineering. It is especially important to
recognize that an evolved system may not have a clear
functional decomposition. A functional analysis decomposes
the system into semi-independent subsystems with separate
roles; the subsystems interact largely through their functions
and independently of the details of the mechanisms that
accomplish those functions [63]. Systems designed by humans
can usually be understood in this way, because of the “divide
and conquer” approach universally adopted to tackle complex
designs.

Although an evolved system may have particular func-
tions localized in identifiable subsystems, this is not always
so. Dynamic systems theory [64] provides a mathematical
framework in which systems can be characterized without a
functional decomposition. Hence, what to many people is the
essence of understanding—being able to point at parts of the
whole and say what function they perform—is not always
possible for evolved systems. In this case, more precisely
formulated questions regarding the organization of behavior
must replace fuzzy notions of understanding or explanation
rooted in functional decomposition. In our case, these ques-
tions are centered around the suitability of an evolved circuit
for engineering applications. Addressing these questions, such
as those regarding long-term dynamics, is what we mean by
analysis.

The successful action of a circuit can be considered as a
property of the interface between its inner mechanisms and
the external environment [63]: the inner has been adapted so
that the behavior at the interface satisfies the specification.
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Observations at the interface (e.g., at input and output connec-
tions) during normal circuit operation may reveal little about
the inner mechanisms, but instead will largely reflect the de-
mands of the specification. Analysis therefore requires internal
probing, and/or observation under abnormal conditions, either
internal or external.

There are surprisingly many tactics that can be used to piece
together an analysis.

• Probing and abnormal conditions. Abnormal conditions
include: manipulation of the input signals, varying tem-
perature or power-supply voltage, replacing parts of the
circuit with alternative or nonfunctional pieces, and in-
jecting externally generated signals at internal points.
Monitoring an internal voltage always has some side
effect, often placing a mostly reactive load at the prob-
ing point. This may have negligible consequences, but
potentially perturbs the measurement or even stops the
circuit from working altogether. Probing internal signals
of a circuit implemented on an FPGA can require routing
extra connections to reach the external pins of the device,
with a danger of further disrupting the circuit under study.
Advanced noncontact measurement equipment such as the
electric-potential microscope [65] should prove power-
ful for scientific understanding, but is inconvenient for
regular engineering projects, requiring the surface of the
silicon die to be exposed.

• Mathematical techniques, including standard electronics
theory, are preferable for their rigor and generality. If a
whole unconventional evolved circuit is mathematically
intractable, there may still be parts of it which yield.

• Simulationof a circuit allows rapid and extensive inter-
active exploration. Circuits evolved not in simulation, but
using real reconfigurable hardware, may rely on detailed
hardware properties not easily modeled in a simulation.
Attempts at simulation can at least help to clarify the
extent of this dependence.

• Synthesis:a circuit can be implemented using alternative
electronic devices. For example, a circuit evolved on a
single very large scale integration (VLSI) reconfigurable
chip might then be constructed out of a number of hard
wired small-scale chips. This provides easy access for
probing and manipulation of internal signals and again
can clarify what aspects of the hardware are important to
the circuit’s operation.

• Power consumptionfor the most common VLSI technol-
ogy (CMOS) is related to the rate of change of the internal
voltages. After removing any power-supply smoothing
capacitors, power consumption can be monitored with
high temporal precision, while the circuit is exposed to
test conditions.

• Electromagnetic emissions, resulting from rapidly chang-
ing electrical signals, can sometimes be detected using a
tuned radio receiver. Circuit activity within a chip, which
might be difficult to monitor directly, can thus be roughly
characterized.

• Evolutionary history:The mechanism underlying a task-
achieving behavior may be more apparent soon after its
evolutionary origin, rather than after evolution has refined

it closely to match the specification. It may be possible
to identify the innovation (perhaps caused by one or
more mutations) giving rise to the behavior’s origin in
an ancestor, and to relate this to the operation of the final
circuit.

• Population diversity:Sometimes there can be several
slightly different (but related) forms of high-fitness cir-
cuits in an evolutionary population, which can help to
reveal the basic mechanisms used.

Although unconventional evolved circuits can seem daunt-
ingly unfamiliar, the analyst is far from powerless. We now
apply these tactics to the evolved tone-discriminator, which
is probably the most bizarre, mysterious, and unconventional
unconstrained evolved circuit yet reported. The aim is to
explore how analysis may be able to abate some of the worries
associated with employing very unusual evolved circuits in an
engineering application.

From the observations made so far, one could only speculate
as to the circuit’s means of operation, so unusual are its
structure and dynamics. It was clear that continuous time
played an important role. If the circuit was configured onto
a different, but nominally identical, FPGA chip (not used
during evolution), then its performance was degraded. If the
temperature is raised or lowered, then the circuit still works,
but the frequencies between which it discriminates are raised
or lowered. (Digital circuits usually display unchanged behav-
ior followed by brittle failure on approaching their thermal
limits [66].) These initial observations warranted a concerted
application of our tactics for unconventional analysis.

Recall that at intermediate frequencies, the circuit’s output
alternates rapidly between low and high voltages (Fig. 20),
otherwise it is steady high or low. This binary behavior of the
output voltage suggested that perhaps part of the system could
be understood in digital terms. By temporarily making the
assumption that all of the FPGA cells were acting as Boolean
logic gates in the normal way, the FPGA configuration could
be drawn as the logic circuit diagram of Fig. 21.

The logic circuit diagram shows several continuous-time
recurrent loops (breaking the digital design rules), so the
system’s behavior is unlikely to be fully captured by this
Boolean level of abstraction. It contains, however, many
“canalyzing” functions [67], such asAND and OR functions,
where one input can assume a value that makes the other inputs
irrelevant. It so happens that whenever our circuit’s input is

, all of the recurrent loops in parts A and B are broken by
a cascade of canalyzing functions. Within 20 ns of the input
becoming , A and B satisfy the digital design rules, and all of
their gates deterministically switch to fixed, static logic values,
staying constant until the input next goes to.

Part C of the circuit is based around a 2:1 multiplexer.
When Part B is in the static state, the multiplexer selects the
input marked “1” to be its output. This input comes from the
multiplexer’s own output via an even number of inversions,
resulting in no net logic inversion but a time delay of around
9 ns. Under certain conditions, it is possible for such a loop
to oscillate (at least transiently), but the most stable condition
is for it to settle down to a constant logic state. The output of
the whole circuit is taken from this loop. As this part C loop
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Fig. 21. The logic circuit representation. The numbers in hexagons are rough estimates of time delays (in ns), based on the maximum values specified by
the manufacturer. IOB refers to the inverting input/output blocks that interface the edges of the reconfigurable array to the physical pins of the chip.

Fig. 22. The timing of the evolved circuit’s response to a change in input
frequency.

provides the only possibility for circuit activity during a high
input, the next step in the analysis was to inspect the output
very carefully while applying test inputs.5

We had already observed that the output only ever changes
state (high low or low high) on the falling edge of
the input waveform (Fig. 22). It was then discovered that the
output also responds correctly to the width of single high-going
pulses. Fig. 23 shows a low high output transition occurring
after a short pulse; further short pulses leave the output high,
but a single long pulse will switch it back to the low state. The
output assumes the appropriate level within 200 ns after the
falling edge of the input. The circuit does not respond to the
width of low-going pulses, and recognizes a high-going pulse
delimited by as little as 200 ns of low input at each end of the
pulse. The output is perfectly steady at logicor , except
for a brief oscillation during the 200 ns “decision time” which
either dies away or results in a state change.

This is astonishing. During the single high-going pulse, we
know that parts A and B of the circuit are reset to a static

5The 20 MHz oscilloscope used for the earlier photographs of Fig. 15
was inadequate for analysis purposes. For the remainder, a Hewlett Packard
54542C four-channel digital storage oscilloscope was used, which samples at
2 Giga-samples/sec and is bandwidth limited to 500 MHz.

state within the first 20 ns (the pulse widths are vastly longer:
500 s and 50 s correspond to 1 kHz and 10 kHz). Our
observations at the output show that Part C is also in a static
state during the pulse. Yet somehow, within 200 ns of the
end of the pulse, the circuit “knows” how long it was, despite
being completely inactive during it.

This is hard to believe, so we have reinforced this finding
through many separate types of observation, and all agree that
the circuit is inactive during the pulse. Power consumption
returns to quiescent levels during the pulse. Many of the
internal signals were (one at a time) routed to an external pin
and monitored. Sometimes this probing altered (or destroyed)
the circuit’s behavior, but we have observed at least one signal
from each recurrent loop while the circuit was successfully dis-
criminating pulse-widths, and there was never activity during
the pulse. We were concerned that perhaps, because of the way
the gates are implemented on the FPGA, it was possible that
glitches (very short-duration pulses) were able to circulate in
the circuit while our logic-analysis predicts it should be static;
possibly these glitches could be so short as to be unobservable
when routed to an external pin. Hence, we hand-designed a
high-speed glitch-catching circuit (basically a flip-flop) as a
configuration of two FPGA cells. Glitches sufficiently strong
to circulate for tens of microseconds could be expected to
trigger the glitch-catcher, but it detected no activity in any of
the recurrent loops during an input pulse.

The circuit is not relying on influences from outside of
the chip. Once the configuration had been downloaded to the
device, it could be detached from all external circuitry. The
only connections to the chip were then power-supply wires
from a 6 V battery and shielded wires for the input and
output, all directly wrapped onto the chip’s pins (no socket,
no decoupling capacitors). The whole isolated chip and battery
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Fig. 23. The response to a single high-going pulse.

(a) (b)

Fig. 24. Behavior of the first frequency-discriminating ancestor. The upper waveform is the output and the lower the input; we see the behavior immediately
after the falling edge of a single input pulse. (a) Long pulse and (b) short pulse. The input to the FPGA is actually delayed�40 ns by an intervening
buffer, relative to the wave seen here.

assembly could then be placed in a grounded metal box, and
the circuit still displayed the correct behavior.

We performed a digital simulation of the circuit (using
PSPICE), extensively exploring variations in time delays and
parasitic capacitances. The simulated circuit never reproduced
the FPGA configuration’s successful behavior, but did corrob-
orate that the transient as the circuit enters its static state at the
beginning of an input pulse is just a few tens of nanoseconds,
in agreement with our experimental measurements of internal
FPGA signals, and according with the logic analysis. We then
built the circuit out of separate CMOS multiplexer chips,
mimicking the way that the gates are actually implemented
by multiplexers on the FPGA, and also modeling the relative
time delays. Again, this circuit did not work successfully,
and—despite our best efforts—never produced any internal
activity during an input pulse.

We then went back to find the first circuit during the
evolutionary run that responded at all to input frequency. Its
behavior, originally shown at generation 650 in Fig. 15 using
an inadequate oscilloscope, is enlarged in Fig. 24. During a
pulse, the output is steady low. After the pulse, the output

oscillates at one of two different frequencies, depending on
how long the preceding pulse was. These oscillations are stable
and long lasting. The differences are minor between this circuit
and its immediate evolutionary predecessor (which displays
no discrimination, always oscillating at the lower of the two
frequencies). In fact, there are no differences at all in the logic
circuit diagrams; the changes do things like alter where a cell’s
function takes an unused input from. This lends further support
that circulating glitches are not the key: there was no change
to the implementation of the recurrent loops.

We see bistable oscillations similar to Fig. 24 at internal
nodes of part A of the final circuit. On being released from
the canalyzed stable state, the difference in the first 100 ns
of oscillatory behavior in part A is used by parts B and C to
derive a steady output according to the pulse width. There is
some initial state of the part A dynamics which is determined
by the input pulse length. This initial state does not arise from
any circuit activity in the normal sense: the circuit over the
entire array of cells was stable and static during the pulse. It
is a particular property of the FPGA implementation, as it is
not reproduced in simulation or when the circuit is built from
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separate small chips. One guess is that the change in initial
state results from some slow charge/discharge of an unknown
parasitic capacitance during the pulse, but we cannot yet be
sure.

We understand well how parts B and C use A’s initial
oscillatory dynamics to derive an orderly output, and have
successfully modeled this in simulation. The time delays on the
connections from A to B and C are crucial. This explains the
influence of the grey cells, which are all immediately adjacent
to (or part of) the path of these signals. Varying the time delays
in the simulation produces a similar result to interfering with
the grey cells. Mostly, the loop of part C serves to maintain
a constant and steady output even while the rest of the circuit
oscillates, but immediately after an input pulse it has subtle
transient dynamics interacting with those of A and B.

D. Conclusion to Case Study 2

The results described here represent the state of the art in
the exploration of radically new territories of design space.
The circuit is small, but definitely not trivial. For a human
designer to solve this problem using only 32 cells, with no
clock or external components, would be very difficult indeed
(if feasible at all).

The circuit vividly demonstrates the power of unconstrained
evolution. With a freedom to explore rich structures and
dynamics, evolution has been able to exploit the natural
behaviors arising from the physics of the device. Analysis
of such an evolved circuit enhances its utility, but requires
novel approaches. There are numerous tactics that can be used
to piece together answers to analysis questions even for a
seemingly impenetrable circuit. We still do not understand
fully how it works: the core of the timing mechanism is
a subtle property of the VLSI medium. We have ruled out
most possibilities: circuit activity (including glitch-transients
and beat-frequencies), metastability [41], and thermal time
constants from self-heating. Whatever this small effect, we
understand that it is amplified by alterations in bistable and
transient dynamics of oscillatory loops and in detail how
this is used to derive an orderly near-optimal output. Certain
peripheral cells fine-tune particularly sensitive time delays. On
the key question of long-term consistency of behavior, we
know that the entire FPGA circuitry is strongly reset to a
deterministic stable logic state for every high half-cycle of the
input waveform. Long-term pathologies are therefore highly
unlikely, demonstrating that analysis effort can sometimes
remove worries related to the use of highly unconventional
circuits in practical applications.

It now seems indisputable that hypotheses H1 and H2 are
true: “Evolutionary algorithms can explore some of the regions
in design space that are beyond the scope of conventional
methods.” The fascinatingly alien tone-discriminator circuit
was produced using a very basic evolutionary method, with
no great difficulty other than to leave behind preconceptions
of how electronics should be. The circuit gives a tantalizing
glimpse of the theoretically possible engineering attractions,
such as small size by finding forms and processes that are
natural to the VLSI medium. However, it is invalid to make a

direct comparison with conventionally designed circuits: these
have a much larger operational envelope.

V. TOWARDS ROBUST UNCONVENTIONAL EVOLVED CIRCUITS

If the 10 10 region of the evolved tone-discriminator
was translated to another region of the 6464 array, on
the same chip, then performance was degraded: sometimes
slightly, sometimes completely. Similar failings are found if
the evolved configuration is used on a different nominally
identical FPGA, though in both cases if evolution was allowed
to continue, the population quickly adapted to the charac-
teristics of the new silicon. Combined with the relatively
narrow range of operating temperatures, this unportability
restricts the circuit to very esoteric applications. To claim
that an unconventional circuit is better (hypothesis H3), in a
practical sense, it must have a more comprehensive operational
envelope. We now present three research tools currently in use
to bring this about, or at least to illuminate the potentials and
limitations of the unconstrained approach.

A. The Evolvatron

The “Evolvatron” is a tool that can provide an evolutionary
selection pressure for robustness, without having to prejudge
how this should be achieved. For example, [66] observes that
analogs of many of the strategies for thermal robustness found
in animals, from a behavioral level down to the molecular,
could also arise in unconstrained evolved electronics subject
to this selection pressure. Some of these strategies are very
different to those practiced in conventional electronics design.

Section II described how orthodox methods bring about
robustness by adopting general design constraints. In contrast,
the evolutionary goal is to produce mechanisms for robustness
that are tailored to the task, the structure and dynamics
of the circuit, and—in turn—the natural physical resources
of VLSI. This approach is less restrictive to design space
exploration, and can potentially find holistic strategies for
robustness that are superior in their particular domain. By
holistic we mean a strategy not only tailored to the situation,
but which also emerges at the system-level, not necessarily
demanding robustness of all of the parts. Here, robustness is
part of the target of the evolutionary design process, whereas
for conventional methods it is mostly a constraint placed upon
the design process itself.

The Evolvatron is shown in Fig. 25 and is fully described
in [68]. It consists of an expandable collection of XC6216
FPGA’s, which are maintained in different conditions. Fig. 26
summarizes the conditions currently provided in the pictured
machine. Using five chips, from two different foundries, a
selection is provided of thermal conditions, power-supply volt-
ages, output loads, host FPGA interfaces, chip packages,
and positionings of the 10 10 evolved region within the
array.

For a fitness evaluation, a circuit is downloaded to each
of the chips, which are then tested simultaneously at the
target task. The evaluation function combines the five scores
so as to give a measure of the circuit’s ability to perform
the task in all of these conditions: the selection pressure for
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Fig. 25. The Evolvatron.

robustness. Preliminary results for the tone discrimination task
are encouraging [68]. The primary research questions are the
following.

• What resources are needed for robustness? Are stable off-
chip components required? Is it necessary to provide a
stable oscillation as an extra input to the evolving circuits?
Such a clock would be a resource to be used in any
way (or ignored) as appropriate, rather than an enforced
constraint on the system’s dynamics as in synchronous
design.

• Can generalization over an entire, practical, operational
envelope be achieved through evolution in a relatively
small number of different conditions?

• Given the experimental arrangement described herein,
is the evolution of a robust circuit more difficult than
of a fragile circuit evolved on just one FPGA? (An
apparently harder task is not necessarily more difficult
for evolution, depending on the pathways available for
evolutionary change.) Does it make sense gradually to
increase the diversity and span of the operational envelope
during evolution, or should the population be exposed to a
representation of the complete operational envelope right
from the beginning?

• If robust circuits are evolved, how do they work? Do
they look more like conventional circuits? Are they still
smaller?

B. The Evolvable Motherboard

We now introduce a research tool designed to allow explo-
ration of design space further than is possible with commercial
FPGA’s. The tool [henceforth referred to as the evolvable
motherboard (EM)] allows a large variety of electronic com-
ponents to be used as the basic active elements and has
an interconnection architecture such that any component pin
can be independently connected to any other. Interconnec-
tions are directly accessible to test equipment, facilitating
analysis of circuits configured on the EM. Fig. 27 is a sim-
plified diagram of one corner of the EM and the plug-in

daughterboards containing the basic elements. The diagonal
lines represent digitally controlled analogue switches which
allow row/column interconnection. The minimum number

of switches required to ensure all possible combinations
of interconnections between basic elements is equal to the
number of different pairs of the total of their pins

(3)

where is equal to the total number of basic element pins.
Equation (3) can be realized using a triangular matrix of
rows columns, approximated on the EM using commer-

cial analogue crosspoint switch arrays. Each daughterboard
takes up to eight lines on the switch matrix, plus a further
eight connections to allow for power lines and I/O, which may
be required by components such as operational amplifiers or
digital potentiometers. EM’s have been constructed using

(Fig. 28), admitting up to six daughterboards. Expansion
ports are provided so that several EM’s can be daisy-chained
together.

Connections made using the analogue switches have resis-
tance and capacitance, hence forming an integral part of any
circuit configured. In total, approximately 1500 switches are
used, giving a search space of 10 possible circuits. The
on resistance of the analogue switches prevents configurations
that short the power rails from damaging the EM provided the
power supply is less than 3 Vdc. Using an ISA interface (not
shown), the switches can be programmed by direct writes to
a PC’s internal I/O ports, allowing circuits to be instantiated
in hardware in a very short time (1 ms).

The EM was conceived to help provide insights into choos-
ing the basic element type and interconnection architecture
of an FPGA ideally suited to circuit design using artificial
evolution and to aid analysis of bizarre evolved circuits whose
operation could not be explained by function-level models.
Research is currently in progress using transistors, multiplex-
ers, and operational amplifiers as basic elements, but results
presented in this paper are restricted to the use of bipolar
transistors. By catering for all possible interconnections, a
variety of more restrictive architectures can be evaluated for
a given EA by the appropriate choice of genotype-phenotype
mapping. While simple circuits have been successfully evolved
using the full complement of switches (by directly mapping
each genotype bit to a different switch), this is not generally
appropriate since candidate solutions tend to short out the basic
elements [69]. The following example illustrates the use of an
interconnection architecture chosen to reflect the connectivity
found in conventional circuits.

The task was to evolve a circuit to minimize the ac error
between the output and amplified input voltages, using the
fitness measure

(4)

where is the desired amplification factor, and are
the th input and output voltage measurements, respectively,
and and are the dc offsets of input and output,
respectively. Amplification was set to 10. The fitness
measure equates to a simple inverting amplifier; however, it
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Fig. 26. An example of an achievable set of test points within an operational envelope.

Fig. 27. Simplified schematic of part of the evolvable motherboard.

is not intended to be a practical amplifier since the fitness
measure makes no provision for phase shift, and only a single
frequency was applied at the input during evaluation: a 1
kHz sine-wave of 2 mV peak-to-peak amplitude, offset at

1.4 Vdc. A rank based, generational genetic algorithm with
elitism was used for all the runs, with population size 50.
Genetic operators were mutation and single-point crossover,
with mutation probability set at 0.01 per bit. The genotype is
mapped to the motherboard switches so as to limit the quantity
of switches on per row, so that the pins of active components
are not too highly interconnected. This is consistent with
many conventional circuits where each component pin is
only connected to two or three other pins. In the encoding,
each column is assigned a corresponding row. The genotype
represents the switches a row at a time. For each row, one
bit specifies whether the corresponding column is connected,
followed by column address and connection bits for up to

additional switches. was set to 3, and 48 rows/columns
were used giving a genotype length of 1056 bits. The task was
made nontrivial by denying evolution the use of components
that would be considered essential for conventional design, in
this case resistors and capacitors. This constraint is potentially
useful for VLSI.

Fig. 29 is a circuit diagram typical of those obtained for
the task during 20 runs of 8000 generations each. The cir-
cuits cannot be analyzed in the traditional manner, since
the current gain of bipolar transistors varies widely for
different specimens of a given type. Conventional circuits
are designed to rely only on this property being above some
minimum value [27], whereas unconstrained evolution will
exploit the actual value for this and other properties. It is
therefore difficult to be certain from the diagram alone which
transistors have an active role, and which are “junk.” Using
the EM, analysis is far simpler: unplugging each transistor
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Fig. 28. An evolvable motherboard, with daughterboards of two transistors each attached.

Fig. 29. A typical evolved amplifier. The small squares represent analogue switches turned on.

and reevaluating shows that only Q8 and Q10 are essential
to the circuit’s operation (Fig. 30). Measuring the voltage
directly at the transistors’ terminals reveals both are operating
as emitter-followers. This simple example demonstrates the

EM’s potential for evolving and analyzing small circuits with
arbitrary architectures and active elements, which are elaborate
enough to be used as building blocks in analogue design.
Currently, the EM’s flexibility and observability is being
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Fig. 30. A pruned circuit diagram of the amplifier.

used to study the topologies, dynamics, and failure modes,
of unconventional evolved circuits.

C. Evolution in Simulation of Buildable Circuits

The use of real reconfigurable hardware ensures that the
properties of the physical electronic medium are available
without restriction, to be exploited by the evolved circuits.
Evolution using a detailed simulation is also possible, but a
simulator inevitably neglects some details, while spuriously
affecting others, for all but the smallest of circuits. Simulations
are attractive, being more controllable, observable, and in
some cases faster (in others infeasibly slower), than using real
reconfigurable hardware running in real time. Noise levels can
be controlled in a simulation, which can affect the evolutionary
dynamics [70]. In the following, we give an example of the
special precautions that must be taken to ensure that bipolar
transistor-level simulation results are valid: that the evolved
circuits will actually work when built. The commercial simu-
lator SMASH will be used, but the comments apply equally
to the use of other well-known packages such as SPICE.

The most elementary precaution is only to allow compo-
nents in the simulation that are really available. This not only
implies the use of preferred values for resistors, capacitors,
etc. [71], but also adjusting the transistor model parameters,
such as the saturation current and , to match closely the
components to be used in the real implementation.

It is also necessary to check during the simulations that the
transistors would not be damaged by overcurrent conditions.
This can be done by checking that the base-emitter voltages
and collector currents do not exceed limits (usually0.7 V,
and around 100 mA for low-power transistors). Without this
check, it is common to evolve a circuit that seems to work in
the simulation, but which will instantly destroy the transistors
at power-up if built.

As an example, consider the evolution using a GA of a
transistor amplifier. The genotype was a linear string using

integer encoding: it consisted of a separate gene corresponding
to each component. The gene determines the nature, value and
connecting points of the related component. Experimental de-
tails can be found in [10]. In this particular set of experiments,
the genotype was made up of eight genes, with a total of ten
connecting points available for the evolutionary algorithm to
arrange the components. Half of these points are external ones,
being connected to: a positive power supply (12 V), a negative
power supply ( 12 V), ground, the input signal, and the circuit
output. The other five points are internal to the circuit. The
biased input voltage represents a differential circuit input.

The fitness evaluation was based on a dc transfer analysis,
in which the input signal was swept from the negative to the
positive power supply voltages, in increments of 100 mV.
The function

Fitness (5)

was used, where describes the circuit output voltage as
a function of the dc analysis index, which spans the swept
range of the input signal. This evaluation function aims to
identify the maximum voltage gradients between consecutive
input voltage steps; the higher the gradient, the larger the
amplifier gain will be. Ideally, the amplifier transfer function
should include two saturation regions separated by a narrow,
linear and steep gain region [11].

In a first set of experiments, a penalty term was included
in the fitness function to eliminate circuits presenting over-
current or over-voltage conditions. In a second set, these
restraints were not applied during the evolutionary process,
but the final circuits were inspected before any attempt was
made to build them. For the first set, there was a low success-
rate for GA runs, but the solutions had a greater probability of
working when built. For the second set, there was a higher
apparent success rate for GA executions, but most of the
evolved circuits would not work in practice. This finding gives
a context to some reports in the literature of highly complex
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Fig. 31. The best evolved amplifier from the second set of GA runs.

Fig. 32. Comparison between the dc transfer function obtained in simulation (solid line) and the one achieved by actually measuring the circuit
output (dashed/crosses).

transistor circuits evolved in simulation not using preferred
values, matched transistor models, or any check on over-
current or over-voltage, and for which no attempt was made
to implement using real components (e.g., [72]).

Fig. 31 depicts the schematic of the best amplifier synthe-
sized in the second set of tests. In this run, approximately 10
individuals were evaluated, taking about 20 h running on one
processor of a Sun Ultra Enterprise 2 workstation. Fig. 32
compares the dc transfer function obtained in simulation
with that experimentally measured from the circuit actually
implemented on a prototyping board (Fig. 33).

The topology of the circuit shown in Fig. 31 is very uncon-
ventional: the input is being applied to the collector, and not to
the base, of transistor Q1. The circuit is not exactly equivalent
to any standard transistor stage. Transistor Q3 is redundant.

By running an operating point analysis, it was discerned
that transistors Q2 and Q4 were working as current amplifiers,
whereas transistor Q1 was biased in its reverse region. Q1 and
Q2 act so as to set the dc operating point of Q4, which is
delivering the amplification of the overall circuit.

The diode shown was inserted after evolution to remove a
bias voltage of 0.7 V from the circuit. The resistor values
produced by the GA have also been slightly changed, using
human knowledge, to improve the circuit linearity. Interactive
involvement from an expert is not necessarily undesirable, but
in cases such as this, linearity could alternatively be improved
by a further application of an optimization algorithm to the
component values within the evolved structure.

From Fig. 32, it can be observed that both the implemented
and the simulated versions behave as inverting amplifiers. The
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Fig. 33. The evolved circuit built on a prototyping breadboard for testing.

Fig. 34. Frequency response of the evolved amplifier (in simulation).

shift between the responses is due to a mismatch between
the real diode parameters and the default ones employed by
the simulator. An important feature of this amplifier, which
had to drive a 10 k resistive load during all tests, is that
the saturation voltages approach the power supply values, an
enhancement over our previous results [10].

At first glance, it might seem that this circuit is comparable
to a commercial bipolar operational amplifier, such as the
NE5534 [11]. The latter has a gain of 100 dB and a gain-
bandwidth product of 10 MHz when driving a capacitive load
of 100 pF, while the evolved circuit has a gain of 56 dB and a
gain-bandwidth product of over 100 MHz for the same load,
with both circuits dissipating around 100 mW. Fig. 34 depicts
the frequency response of the evolved amplifier. Such a com-
parison is not warranted, however, because the specification of
the NE5534 includes good performance by many other criteria.
These criteria were not included in our experiment but are

necessary for a useful op-amp [73]. A promising multicriteria
evolutionary method is given in [15]; here we simply aimed to
show that if simulations are to be used at all, then buildability
must be a primary criterion.

VI. CONCLUSION

Three simple and precise hypotheses were addressed.

H1) That conventional methods can only work within con-
strained regions of electronics design space has been
shown first by characterizing what conventional design
practices actually are, and secondly by exhibiting
an evolved circuit obviously beyond them: the tone
discriminating circuit of Case Study 2.

H2) That evolutionary algorithms can explore some of the
regions of design space that are beyond the scope of
conventional methods has been shown explicitly. In
Case Study 1, the DSM robot controller, evolution was
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seen to exploit the enhanced behavioral capabilities
of a conventional architecture, once some constraints
from digital design methods were relaxed. In Case
Study 2, given the freedom, an evolutionary process
produced a working circuit with a structure and dy-
namics foreign to orthodox design and analysis.

H3) That evolutionary algorithms can in practice produce
designs beyond the scope of conventional methods,
and that are better, has been signalled repeatedly but
not demonstrated conclusively. On theoretical grounds,
there is greater opportunity to find the forms and
processes that naturally exploit the properties of the
electronic medium, and this seems to happen in prac-
tice. Nonbehavioral requirements can be integrated
into the design process more seamlessly, and an exam-
ple was seen when the robot controller was evolved to
be tolerant to SSA faults, without the explicit incorpo-
ration of redundant parts. There is the promise of the
evolution of means for robustness that are tailored to
the task, the circuit, and the medium. Hardware and
software tools were presented to illuminate the way
forward in scientific investigation. H3 is at least a good
working hypothesis.

What initially seemed daring hypotheses are now either
matter-of-fact, or within reach. From the vastness of design
space, practically useful novel regions beckon.
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and A. Ṕerez-Uribe, Eds. Berlin, Germany: Springer-Verlag, 1998, pp.
25–35.

[37] A. Thompson, “Evolving electronic robot controllers that exploit hard-
ware resources,” inAdvances in Artificial Life: Proc. 3rd Eur. Conf.
Artificial Life (ECAL’95) (Lecture Notes in Artificial Intelligence, vol.
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